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Abstract. The relation between scalar field theories with short-range and long-range 
exchange or correlations is studied. It is shown to all orders in perturbation theory that 
the critical exponents of fields and composite operators are continuous functions of the 
parameters a([) characterising the decay rate of the long-range exchange (correlations) 
with power-like falloff l / rd+2-2u(l / rd-2*) .  The scaling law ( d  - 2 5 ) v = 2 ,  where v is the 
correlation length exponent, as well as the Harris criteria are shown to be exact to all 
orders in perturbation theory. A discrepancy between two widely used approaches to the 
crossover problem is pointed out. 

1. Introduction 

In several cases a local field-theoretic model, which we shall call the short-range (SR)  

model, is generalised by substituting a non-local operator for a local one. We shall 
call the resulting non-local model the long-range ( LR) model. Typically, the Laplace 
operator is replaced by a non-local counterpart: 

[ dx 4 ( x ) ( - V 2 ) 4 ( x )  -$ [ dx ~ ( X ) ( - V ' ) ' - ~ ~ ( X )  (1) 

or, more correctly, in the momentum space 

where d is the dimension of space, and the same notation is used for both the field 4 
and its Fourier transform. This generalisation may be due to direct long-range exchange 
interaction, as in the case of a Heisenberg magnet [l], or long-range character of 
correlations of a random external field, as in the case of random magnets [ 2 ] ,  in the 
field theory of turbulence [3] and diffusion in a random environment [4], or both these 
factors [ 5 ] .  More formally, the substitution ( 2 )  may be used to regularise a field- 
theoretic model with ultraviolet divergences, leading to a special form of analytic 
regularisation [ 6 ] .  

In all cases, the problem of crossover between short-range and long-range models 
arises: formally, in the a + 0 limit of the LR model, the action of the SR model is 
recovered (at least in the momentum space). However, in this limit various quantities, 
which characterise the asymptotic behaviour of the LR model (the critical exponents 
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in the first place), do not coincide with their counterparts in the SR model, leading at 
first sight to discontinuity of these quantities as functions of the parameter a. To be 
more definite, we shall consider a field theory of a scalar n-component field 4 with 
the O(n)-symmetric action 

~ ( 4 )  = -taVdVd - ; ~ 4 ~ - 4 b 4 ( - ~ ~ ) ’ - ~ 4  - -&,1(4~)~ (3) 
where the values of parameters a > 0, T > 0 and A > 0 correspond to the symmetric 
phase with zero expectation value of the field 4. In equation (3), and all subsequent 
similar formulae, necessary integrals and sums are implied. The Green functions of 
the theory are calculated as functional averages with the weight exp S (  4). 

It was pointed out some time ago by Sak [7] that for this model the discontinuities 
in a are removed if the competition between q2 and q 2 ( ’ - U )  terms in the a -f 0 limit 
of the LR model is properly taken into account. In the renormalisation scheme of 
Wilson [8], local terms %q2 are always being produced by renormalisation, even if the 
initial action contains only the non-local term. For finite a, the corresponding local 
terms of the renormalised action are irrelevant at the critical point, but they become 
at least marginal in the a + O  limit, and therefore their effect should be taken into 
account. It was conjectured by Sak [7] that this interplay removes the discontinuity 
of exponents as functions of a and that for long-range exchange with O S  a < 7712 the 
critical exponents actually have the short-range values, and at the value a = 77/2 they 
coincide up to logarithmic corrections (7  is the Fisher exponent of the short-range 44 
model). Sak showed this to be the case in the first non-trivial order of perturbation 
theory (i.e. to the order O(E’ )  in the E expansion) using the recursion relations of 
Wilson. Further support for this assertion was provided by the result of Suzuki [9], 
from which it follows that this continuity holds to the order O( 1/ n )  in the 1/ n expansion 
for arbitrary space dimensionality 2 < d < 4. Although this is generally believed to be 
true to all orders in perturbation theory [ 11, it probably cannot be proved with these 
methods. 

On the other hand, if the LR model is used as the regularised version of the SR 

model, then the upper critical dimension becomes a dependent: 

d, = 4 -4a 

and expansions of critical quantities in E = 4 - 4a - d may be constructed, in full 
analogy to the usual 4 - d = E expansion. The ‘physical’ value of E then corresponds 
to the initial short-range model, i.e. Eph = 4 - d. The long-range term, however, is not 
renormalised since it is non-analytic in q2,  and renormalisation yields only terms 
polynomial in momenta. This fact is not totally trivial and will be explained in detail 
in the next section. As a consequence of this, the anomalous dimension of the field 
4 is zero, which leads to a false result for the Fisher exponent: 7 = 0. This problem 
is the mentioned discontinuity problem put in other words, and the cure is the same: 
the ‘dangerous’ irrelevant operator 4V24 must be included in the renormalisation 
procedure in the a + 0 limit of the LR model. 

The purpose of this paper is to present a relatively simple treatment of this problem 
to all orders in perturbation theory. Our approach is similar to that of Weinrib and 
Halperin [2] and we generalise some of their results, but we have used the field-theoretic 
framework, in which the properties of different renormalisation schemes and their 
relations have been analysed in great detail. We also point out that the ‘standard’ 
approach [ 10, 111 to fixed-point stability problems, which exploits renormalisation of 
composite operators, seems to fail in this case, contrary to the problem of diffusion 
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in random environments, in which both approaches complement each other [ 121. The 
paper is organised as follows: in § 2 we describe the renormalisation procedure for 
the 44 model with both short- and long-range exchange. Renormalisation constants 
are constructed explicitly in § 3, in which the stability of non-trivial fixed points of 
the corresponding renormalisation group equations is also studied and the field 
dimension is shown to be a continuous function of cy in perturbation theory. In § 4 
we consider the 44 model with both short-range and long-range correlated disorder, 
and prove the scaling law ( d  - 2 5 ) ~  = 2  [2] and the Harris criteria [2,13] to be exact 
to all orders in perturbation theory. Section 5 is devoted to renormalisation of composite 
operators and the failure of the ‘standard’ approach in the problem of crossover 
between short-range and long-range exchange. 

2. Scalar 44 model with short-range and long-range exchange 

We shall treat here the interplay of short-range and long-range exchange within the 
field-theoretic renormalisation group approach to critical phenomena [ 113. To this 
end, we consider a Euclidean field theory with the following basic action (we follow 
the terminology of Collins [ 14]), which includes both the short-range and long-range 
term: 

where b and A are the renormalised parameters of the model. For convenience, the 
‘mass’ term has been omitted (i.e. the model is investigated at the critical point) and 
the coefficient a of the short-range term (3) has been absorbed in a redefinition of the 
field and the remaining parameters. The Green functions of the theory are calculated 
as functional averages of field monomials with the weight exp( S). In order to construct 
a tractable diagrammatic expansion, one of the quadratic terms has to be treated as 
an interaction term, while the other determines the bare propagator of the model. We 
shall regard the long-range term as an interaction. We shall use dimensional regularisa- 
tion with minimal subtractions thus introducing a small parameter E = 4 - d. Since we 
are ultimately interested in small values of cy, it is natural to consider this small 
parameter on equal grounds with E.  The effect of the long-range ‘interaction’ term is 
to shift the powers of momenta in propagators by a multiple of cy. Therefore, we arrive 
at a diagrammatic expansion of the usual local 44 field theory, which has effectively 
been regularised by a combination of dimensional and analytic regularisation schemes. 
Due to this, the usual minimal subtraction scheme has to be slightly modified. Instead 
of poles in E ,  ultraviolet divergences show in the form of poles in parameters S = P E  + ra, 
where p and r are rational numbers, and this leads to a modification of the standard 
relations between anomalous dimensions and renormalisation constants [ 151, details 
of which will be given in the next section. We introduce the usual scale-setting 
parameter p in order to make the coupling constants dimensionless: 

Standard power counting shows that this action is multiplicatively renormalisable. 
However, the momentum dependence of the long-range term is not analytic, and 
therefore it is not renormalised, since the counterterms arising from the renormalisation 
procedure are polynomial functions of momenta. 
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This can be seen as follows. The long-range term effectively produces new lines 
corresponding to 'propagators' of the form q2(1--a' in our case, when the long-range 
term is treated as an interaction. Apart from this, an effective two-point 'vertex' appears 
in the chains consisting of the new and original lines (al/q2).  Thus, the diagrammatic 
rules are standard, except for the analytic form of the new lines. However, upon the 
parametrisation 

the (Y dependence is transferred to the parametric integral and is of the same type as 
in the analytic renormalisation scheme [ 6 ] ,  whereas the momentum integrals take the 
familiar Gaussian form. This means that all the standard machinery [14,16] of the 
renormalisation theory may be applied, and the primitive convergence or divergence 
of each (one-particle irreducible, IPI) graph F of the theory is determined as usual by 
the degree of divergence 6r of the graph, which in this case may be an irrational 
number. By definition, the degree of divergence is equal to the dimension of the IPI 

graph in the momentum space. It is a fundamental fact of the theory of renormalisation 
that a graph with a negative degree of divergence is convergent after the subtraction 
of its subdivergences (which correspond to divergent subgraphs). 

Proceeding in the usual way [14], we consider a I P I  graph r with non-negative 
degree of divergence 6 r a  0. Let R(T)  be the renormalised (finite) value of the graph 
and denote by B(r) the value of the graph with subtracted subdivergences. Then 

R ( r )  = R(r)- TrR(r) ( 6 )  

where Tr is an operator, which extracts the divergence of R(r). Differentiating with 
respect to external momenta, we arrive at a similar relation for the graph akr, where 
af, denotes any I-fold differentiation with respect to the external momenta. Choosing 
1 > dr we ensure that the differentiated graph has a negative degree of divergence. 
Therefore, after subtraction of subdivergences it yields a finite expression, i.e. R(akr) 
does not contain divergences, and the corresponding counterterm (the second term in 
the right-hand side of the analogue of the relation (6)) may be chosen to be finite. 
From this it immediately follows that the counterterm for the initial graph r is 
polynomial in the external momenta. If it were not, the divergences in it would be 
transferred to the analogue of (6) for the differentiated graph air, thus leading to a 
contradiction. For this argument it is essential that the contribution of the non-local 
term of the action ( 5 )  may be represented in terms of effective new lines and local 
vertices, which allows us to use the standard techniques of renormalisation theory. 

Adding the relevant (local) counterterms, we obtain the renormalised action in the 
form 

S = - f Z , V 4 V 4  - ~ b p 2 - a 4 ( - V 2 ) ' - - a 4  -&Ap'Z144. (7)  

This action leads to the following connection between renormalised and bare para- 
meters: 

b + bo = bp2"ZG' A+Ao=Apu"Z1ZG2. (8) 
The definition of beta functions is standard [l l]:  
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and leads to the expressions 

where 

In the definitions (9) and ( 1 1 )  derivatives are taken with fixed values of the bare 
parameters bo and h o .  Stability of the fixed point ( b , ,  A,) defined by Pb(b,,  A,) = 
PA (b , ,  A,) = 0 is characterised by the eigenvalues of the matrix B of the first derivatives 
of the beta functions at the fixed point: 

We have now described the renormalisation scheme, and to proceed further we need 
some information about the structure of renormalisation constants as functions of b 
and A. 

3. Renormalisation and stability of fixed points 

We need the following general result, which can readily be obtained as a combination 
of two well known theorems [ 161 describing the structure of divergences in analytic 
and dimensional renormalisation schemes: if these approaches are being used simul- 
taneously, as in our case, then the divergences of a given one-particle-irreducible ( IPI)  

graph TI with I arbitrarily numbered lines appear in the form of a polynomial of the 
quantities 1 /Ap , / ,  where A , !  are of the form 

I 

A,, /= p p ( j ) + t L / E - N p , / *  ( 1 3 )  
j = 1  

Here, the set of I C  I numbers 1 c p ( j )  S I denotes a divergent subgraph TI of the 
graph TI, spanned by the lines with these numbers. Through Ll we denote the number 
of loops in the subgraph TI, E is the deviation of space dimensionality d from the 
upper critical dimension d ,  : E = d ,  - d, and Np,] is an integer not exceeding one-half 
of the value of the degree of divergence SI-, of the subgraph Tr. By definition, Sr, is 
the dimension of the graph T, in the momentum space. Parameters pp( j ,  regularise the 
propagators corresponding to the lines of the graph in the following way: 

where the mass parameters mp( j )  have been introduced in order to avoid infrared 
divergences (inequalities Re p p ( j )  > 0 are assumed to hold, since this scheme has 
originally been constructed to handle ultraviolet divergences). In our case the p are 
multiples of a > 0 and thus this condition is fulfilled. Moreover, small parameters of 
the problem are of the form 6 = P E  + ra. Therefore only the poles with NP,/ = 0 are 
relevant. In order to obtain the contribution of a I P I  graph to renormalisation constants, 
the terms non-analytic in p and E corresponding to divergent subgraphs have to be 
subtracted. In a subtraction scheme of the minimal type, only terms linear in l / A  



756 J Honkonen and M Yu Nalimov 

contribute to the anomalous dimensions. For each IPI  graph only one term linear in 
l / A  with NP,' = 0 remains, for which AP,] = Z;=l p, + L,s /2 .  Therefore, for the theory 
without the long-range term the renormalisation constants may be expressed in the form 

where the sums are taken over the number of loops in IPI  self-energy and four-point 
vertex graphs, respectively. For functions ylsR and Y + ~ ~  one then obtains the expansions 

n = 1  

It is not difficult to see that the effect of the insertions of the LR term is to replace 
each propagator in the graphs by a sum of analytically regularised propagators in the 
fashion 

The effective propagators generated by this formula differ from those of the 'canonical' 
form of analytic regularisation (14). Due to the independence [ 111 of renormalisation 
constants of the infrared regularisation (the parameters m in our case), this does not 
affect the critical properties of the theory. As a result of the substitution (17), each 
term in the sums (15) will be replaced by a sum of terms with denominators shifted 
by a multiple of a and the expressions for renormalisation constants take the form 

+0(F2) 
n = 2  I = O  n E  + 21a 

+ O( 
n = 1  I=O ns + 21a 

where the functions K + 1, when F -f 0, (Y -f 0. These expressions are valid in the case 
of independent small parameters a and E. However, dimensional considerations 
suggest (and this is confirmed by the result of Sak [7]) that the crossover from the LR 

to the SR regime sets in at a = O( E )  or smaller. In this case, minimal subtractions 
correspond to the choice Knl = K k l =  1, which we shall adopt. Let us introduce the 
notation [Zill for those parts of the renormalisation constants 2, which consist of the 
terms containing simple poles in the parameters 8 = Is + 2ka, where 1 and k are positive 
integers. Thus, for instance, [Z,], stands for the sum 

n=2  I=O 

Functions y4 and y ,  are expressed through the renormalisation constants as follows: 
a a 

ah  ab  
?b = - ~ h - [ Z ~ ] ~ - 2 a b - [ Z ~ ] ~  

a a 
y1 = EA - [Z1ll +2ab-  [Z1ll. 

a h  ab  
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Substituting the expansions (18) into this equation we obtain 

y b ( b , A ) = - c  ( 1 -2n )b 'A"A.=-( l+b)  A n ( l + b ) - 2 " A n  

y l (b ,A)=  (-y")b'A"B,,= A"(l+b)-2"B,. 

n = 2  I = O  n = 2  
(20) 

n = l  I = O  n = l  

Comparison with the relations (16) then reveals that the y here are given by essentially 
the same functions as in the SR case (19), the main difference being in the arguments 
of these functions: A of the SR case is replaced by A (  1 + b)-* in (20): 

Y+(b, A )  = (1 + b) Y+SR[A(1 +b)-21 A )  = ylSR[A(l+b)-21* (21) 

The beta functions (10) therefore take the form 

P b =  b { - 2 a + ( l + b ) ~ + S R [ A ( l + b ) - 2 ] }  

PA = A{ --E + ylSRIA (1 + b)-2] + 2( 1 + b)y+,,[A (1 + b)-2]}. 

The effective expansion parameter turned out to be A (1 + b)-* = g instead of the initial 
coupling constant A. Therefore we shall study the properties of fixed points in terms 
of b and g rather than b and A. For b and g, the beta functions are the following: 

(22) 

P b =  b[-2aS(1+b)y+SR(g)l 

The corresponding renormalisation group equations have two non-trivial fixed points 
and we shall investigate first the conditions of stability of the fixed point corresponding 
to the SR model, at which b, = 0 and g, is given by the equation 

Y 1 S R ( g * ) + 2 Y + S R ( g * ) - - E = 0 .  (24) 
At this fixed point, the matrix of first derivatives B turns out to be triangular: BiF = 0, 
and the eigenvalues coincide with the diagonal elements of the matrix B. The lower 
diagonal element BZ," is positive, at least for small E > O ,  since the SR fixed point is 
perturbatively infrared stable [ 111. The upper diagonal element Bbb is of the form 

BSR - 
bb - YbSR(g*) -2ff 

and due to the relation between the Fisher exponent 7 and the anomalous field 
dimension y+ : 

7 = YdSR(g*) 
it follows that the SR fixed point is stable against the long-range perturbation, provided 
the condition of Sak [7] 

7 > 2 a  ( 2 5 )  
is fulfilled. This result may be obtained also from a simple scaling argument [5] which, 
however, does not apply to the case of the LR fixed point with b = 6 2  0, g = g # 0. 

This fixed point is determined by equations 

( 1 + 6) y + S R ( g )  - 2 a = 0 (26) 
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Using equation (26), one may exclude the parameter 6 from equation (27) to obtain 

YISR(g)-&+4a = o  (28) 

the fixed-point equation of the 'purely LR' model, i.e. the model defined by the basic 
action of the form 

S(4) = -44(-V2) l - m ~  -&$2 -&A (42)2. 
The lower diagonal matrix element BkF is given by the same function of g as in 

the short-range case, taken at the point g instead of g,. Thus, for small a, this matrix 
element is positive. For the upper diagonal matrix element and the determinant we 
obtain 

Both expressions are perturbatively positive for 6> 0. These relations show that this 
fixed point is unstable when 6<0. The sign of 6 is determined by the ratio of the 
parameter a and the function -ySR(g) taken at the LR fixed point g = g, which we denote 
through i j  = ~ , + ~ ~ ( g )  (note that the actual anomalous field dimension in the LR case 
is equal to (1+6) f j  and it is determined by the fixed-point equation (26)). The 
fixed-point equations (26) and (27) yield 

which, with (29), leads to the following condition of stability of the LR fixed point: 

f j  <2a .  (31) 

Summarising, we conclude that the long-distance behaviour of Green functions of 
the field theory ( 5 )  is governed by the power-like behaviour of the long-range term 
for a > 77/2, while in the opposite case a < 7 / 2  it is determined by the Fisher exponent 
77 of the short-range model. In the borderline case both regimes lead to the same 
asymptotic behaviour, up to logarithmic corrections. 

4. 44 model with long-range correlated quenched disorder 

A similar treatment may be carried out for the 44 model with a quenched disorder 
field with competing short-range and long-range correlations. This case has been 
analysed earlier by Weinrib and Halperin [2] in the leading order of perturbation 
theory and we generalise some of their results to arbitrary order. We begin with a 
theory of two fields 4 and cp with the basic action 

S ( 4 ,  cp) = - ~ V C $ ~ V + "  - ~ T ( C ~ ~ ' ) * - & A ( ( C $ ~ ) ~ ) ~  

+ h l ( 4 "  ) * (4  b ) 2  - (1/2g2)(P (-V2)% - 1P (4"12. (32) 
Here, the usual replica trick has been used to produce N copies of the main field 
labelled by a and b (the corresponding sums over these indices as well as the usual 
limit N + 0 are implied), and the new four-point term with coupling constant g, 
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corresponds to the short-range part of the quenched disorder, whereas the cp field with 
the three-point interaction term introduces the long-range part of the disorder. We 
want to deal with field theories with local interactions only and therefore have not 
integrated out the field cp. Upon renormalisation, the renormalisation constants appear 
as follows (we again omit the mass term): 

s( 4, cp = -tz+ 4 a 4 a - h A p  EZ1 ( ( 9 a l2I2 + hgl p "z3( 4 12( 4 )2  

- (1/2g2PLs)cp(-v2)"cp -fz4cp(4a)2 (33) 

where we have introduced the scaling factor p, scaled the field cp + p-'l2cp, and denoted 
S = E + 25 ( E  = 4 - d ) .  Strictly speaking, the action (32) is multiplicatively renormalis- 
able only in the limit N + 0, in which the counterterms quadratic in cp vanish, since 
all the graphs in the diagrammatic expansion of the full cpcp propagator contain at 
least one closed loop a N  of the main field propagators ( a S a b  in the replica space). 
Using the standard connection between bare and renormalised parameters: 

ho = ApEZlZi2 g10 = g,/*%z,' g20 = g2p sz :Z;2  (34) 

we arrive at the set of beta functions 

Pg2=g2[-S+2Y4+2Y+l 

where the y are defined as before ( 1 1 ) .  Note that the definition of g2 implies the 
following renormalisation of the field c p :  

(0 + z4z,'cp = z;!2cp. (36) 

The procedure of the preceding section may be carried out in a similar fashion with 
the same results about the continuity of anomalous dimensions as functions of 6 and 
we shall not repeat it here. Rather, we would like to point out that it also allows for 
an all-order proof of the new scaling law of Weinrib and Halperin [2], which in our 
notation has the form 

2 2 
d - 2 5 -  4 - S 

U=--- (37) 

where v is the correlation length exponent in the 'mixed' disorder regime (i.e. when 
both the short-range and the long-range disorder affect the critical behaviour of the 
model). A scaling argument based on the extended Harris criterion [2] supports the 
conjecture that this relation is exact. To prove it in perturbation theory, let us consider 
the equations which determine the 'mixed' fixed point A, # 0, g,* # 0 and g2* f 0 for 
this model (the 'long-range disorder' fixed point in [2]): 

- E + y , + 2 y+ = 0 

- E  + y3 + 2 y+ = 0 

-S+2y4+2y+  = O s  

(38) 

Using the standard relation [ 111 between the exponent v and the anomalous dimension 
of the composite operator +2: 

yq52(h*, gl*7 g2*)=2-1/v (39) 
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and the fact that the anomalous dimension y,> may be expressed through other y as 

Yb2 = Y4+ Y* (40) 

we immediately see that the last fixed-point equation (38) determines the exponent v 
exactly to all orders in perturbation theory in accordance with the scaling law (37). 
This phenomenon is familiar from other models with long-range correlations [3, 121. 

In this scheme, both the usual [13] and the extended [2] Harris criterion are 
recovered as stability conditions of the pure SR fixed point. To see this, let us consider 
the following diagonal matrix elements of the B matrix (analogous to (12)) at the pure 
SR fixed point A, f 0, g,, = 0 and g2 ,  = 0: 

a g l P n , ( A * , O , O ) =  -E+Y3(h* ,O ,O)+2Y , (A* ,O ,0 )  

d,,P,,(A* 9 090) = -6 + 2Y4(A*, 050) + 2Y,(A* 9 0,O). 
(41) 

At this fixed point the B matrix is triangular. Therefore positivity of these quantities 
guarantees the stability of the pure SR fixed point with respect to disorder effects. To 
relate this condition to the Harris criteria, let us analyse diagrammatic contributions 
to the vertex renormalisation constants. We shall identify the four-point vertices of 
the action (32) by the corresponding coupling constants. We use the fact that the y 
in the relations (41) are calculated for g, = g, = 0. In this case only graphs without 
three-point and g, vertices contribute to Z, and Z,, whereas graphs which contribute 
to Z, and Z4 contain one g, and one three-point vertex, respectively. For Z4, this 
three-point vertex is obviously an external one (i.e. external lines emanate from it) 
with one external cp line and two internal 4 lines. In the case of four-point vertex 
renormalisation, graphs containing one external g, vertex with one external 4 line 
have a ‘local’ structure in replica indices, KaabSacSad, and therefore contribute to the 
renormalisation constant Z, only. Most of the graphs with one internal g, vertex also 
have the same ‘local’ structure and do not affect Z3. There is, however, a class of 
graphs with one internal g, vertex, which contribute to Z3 : these graphs consist of two 
blocks connected only at the g, vertex (i.e. if this vertex is removed, the graph becomes 
disconnected). Due to this, they give rise to terms at least quadratic in 1 / (  PE + r t )  
and do not affect y3,  which we are ultimately interested in. Thus, we are effectively 
left with four-point graphs containing one external g, vertex with two external and 
two internal 4 lines. It is not difficult to see that, apart from this external vertex, these 
graphs coincide with those of the three-point vertex renormalisation. The four-point 
graphs, however, have an extra symmetry factor of 2, owing to which the contribution 
of the four-point graphs to y3 is twice as large as the contribution of the three-point 
graphs to y4. Thus, we obtain 

Y3(A, ,  0,O) = 2Y4(A* 9 090). (42) 
When the relations (39), (40) and (42) ,are taken into account, the requirement of 
positivity of the matrix elements (41), depending on the value of 5, leads either to the 
usual Harris criterion [ 131: 

d v - 2 > 0  5<0 (43 1 

v(d - 2 5 ) - 2 > 0  5’0 (44) 

or to the extended Harris criterion [2]: 

where v is the correlation length exponent of the pure short-range model. These criteria 
refer to stability of the pure short-range regime with respect to disorder, but it is not 
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difficult to see that the extended Harris criterion may be generalised to characterise 
stability of the short-range disorder regime against the long-range disorder. The same 
inequality (44) (but without the condition 6 > 0) 

v ( d  - 2 5 )  - 2 > 0 (45) 
ensures this stability. It should be kept in mind, however, that in formulae (37), (43), 
(44) and (45) the correlation length exponent v (being a continuous function of 
parameters E and 5 )  assumes different values corresponding to different scaling regimes. 

5. Dimensions of composite operators 

In this section, to complete the analysis of continuity of critical exponents as functions 
of a (or .$), we shall deal with the behaviour of anomalous dimensions of composite 
operators. We shall consider explicitly only the simplest case of the operator +2(x) 
in the long-range exchange model (4), since generalisation of its treatment to other 
composite operators is obvious. 

The Green functions with 4' insertions are generated by the action 

S = - iZ+V+V+ -4bF2"+(-V2)'-*+ - & h ~ L Z 1 @ 4 - ~ Z ~ t @ 2  (46) 

as functional derivatives with respect to the source field t = t(x). We are ultimately 
interested in the case when the source field t(x) of composite operator 4' is a constant, 
but to avoid infrared problems in massless theory one has to introduce the source in 
this form [ l l ] .  Most conveniently, the new renormalisation constant 2, may be 
extracted from a I P I  two-point function with one +2 insertion: r+Zc+. Corresponding 
graphs are of the same type as for the vertex renormalisation constants, and therefore 
one readily obtains the relation 

Y2(b,  A ) = Y 2 S R ( g )  (47) 

where y2 is defined by 

and y Z S R  denotes the counterpart of this function in the SR case. At the SR fixed point 
one arrives at the standard result [ 111 

l /  = - YZSR(g*) - Y + S R ( g * )  = 2 -  Y2SR(g*) - 7 (49) 

l /  = 2 -  Y 2 S R ( g )  - (1 + F ) Y b S R ( g )  = - Y 2 S R ( g )  -2a. (50) 

which at the LR fixed point is replaced by 

Due to the fact that g + g, as 6+ 0 (27), continuity of the exponent v is obvious. This 
is obviously true also for the anomalous dimensions of all the other composite operators, 
since the dimensions by construction are expressed as regular expansions in g and b. 

Finally, we would like to point out a discrepancy between this approach and the 
alternative approach [lo, 111 to the stability of fixed points with respect to perturbation 
by irrelevant operators. In the latter scheme the perturbation is renormalised as an 
irrelevant composite operator and its anomalous dimension is calculated, after which 
it can be checked whether the total dimension would render this operator marginal or 
relevant. In our case, however, this method does not work. There are no formal 
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problems if we regard the long-range part of the action (4) as a perturbation: results 
are the same as in the preceding section. In the opposite case, however, problems do 
arise. To see this, let us consider the renormalised action 

S = --;4 ( -V2) 4 - $Ap ‘ 2 1  44 - ft&V 4 V  4 (51)  

for which the upper critical dimension d, = 4 -4a and E‘ = d, - d. There is no need to 
introduce coordinate-dependent sources for the operator V 4 V  4, since the derivatives 
in this operator prevent infrared divergences. At one-loop order we obtain the following 
expression for the beta function: 

where (r is the gamma function) 
2n2-29 1 c, = 

(2n)4-4n r ( 2 - 2 4 ’  

For the anomalous dimension of the composite operator O2 = V 4 V 4  we obtain (since 
the anomalous dimension of the field y+ = 0 in this case) 

where A, is the non-trivial fixed point of the beta function (52)  and the standard 
definition 

has been used. This composite operator should become marginal or relevant in order 
to render the long-range fixed point unstable, which means that its total dimension 
should become non-positive. However, the anomalous dimension of the operator 
O2 = V 4 V 4  turned out to be positive, resulting in the total dimension 

i2 
3 ( n + 2 ) ( 1 - 2 a )  
2 ( n  +8)’(1- a )  

do,=2a + yo, = 2 a  + (54)  

which is positive for small positive a and thus bears no indication that the LR regime 
would become unstable at a > 0, contrary to the results obtained above! Moreover, in 
the treatment of preceding sections the relation a = O ( E )  is assumed to hold and 
therefore in this scheme the SR term is always relevant, owing to the very construction 
of the renormalisation procedure. However, the SR term is obviously irrelevant for 
finite a > 0,  which correspond to the purely LR model whereas, due to (54) ,  there 
seems to be no way to describe the crossover from the purely LR regime to the ‘mixed’ 
regime described by the fixed point (27).  On the other hand, the two approaches 
complement each other in a consistent way in the problem of diffusion in a random 
environment [ 121. Thus, the relation between these approaches to the crossover 
problem appears to be somewhat controversial. Unfortunately, in the random disorder 
model (32 )  there is no infrared stable fixed point for finite t > O  corresponding to a 
purely LR regime and therefore the discrepancy cannot be tested in this model. 
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6. Conclusion 

In this paper, field-theoretic renormalisation group techniques have been applied to 
the analysis of the interplay between short-range and long-range exchange (correla- 
tions) in the 44 model, both with a temperature-like quenched disorder and without 
it. In both cases anomalous dimensions of fields and composite operators are shown 
to be continuous functions of the parameters 6 ( a )  characterising the power-like falloff 
I /  r d - X ( l /  r d + 2 - 2 e )  of the long-range correlations (exchange). Critical exponents are 
shown to assume their short-range values for 6s d / 2 -  l / v  (a s 17/2),  where v is the 
correlation length exponent of the 44 model with short-range correlated disorder and 
7 is the Fisher exponent of the ‘pure’ 44 model. The validity of the scaling law of 
Weinrib and Halperin [ 2 ] :  ( d  - 25)v  = 2 ,  as well as the Harris criteria [ 2 ,  131 has been 
confirmed to all orders in perturbation theory. A controversy between the approaches 
of Weinrib and Halperin [ 2 ]  and Amit and Peliti [ l o ]  to the interplay of long-range 
and short-range exchange in the 44 model is pointed out. 
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